INORGANIC CHEMISTRY

Total Marks: 26

Max. Time: 26 min.

Topic: Chemical Bonding

Type of Questions

M.M., Min.

Single choice Objective ('-1' negative marking) Q.1 to Q.6 Multiple choice objective ('-1' negative marking) Q.7 to Q.8 (3 marks, 3 min.)

[18, 18]

(4 marks, 4 min.)

[8, 8]

- 1. Resonating structures have different:
 - (A) Atomic arrangements

(B) Electronic arrangements

(C) Functional groups

(D) Sigma bond

2. Resonance hybrid of nitrate ion is:

- The correct order of C-N bond length in the given compounds is: 3.
 - P: CH₂CN

(A) P > Q > R

Q: HNCO

(B) P = Q = R

- R: CH₃CONH₂
- (C) R > Q > P
- (D) R > P > Q

- 4. Correct order of bond length is:
 - (A) $CO_3^{2-} > CO_2 > CO$ (B) $CO_2 > CO > CO_3^{2-}$ (C) $CO > CO_2 > CO_3^{2-}$ (D) None of these.
- 5. The strength of bonds by s-s, p-p, s-p overlap is generally in the order:

(A)
$$s-s>s-p>p-p$$

(A)
$$s-s>s-p>p-p$$
 (B) $s-s>p-p>s-p$

(C)
$$s-p>s-s>p-p$$

- Which of the following atomic orbital overlappings are not allowed: 6.

- (A) All
- (B) (i) (ii) (iii)
- (C) (i) (iii) (v)
- (D) (ii) only

- 7.* Indicate the wrong statement according to VBT:
 - (A) A sigma bond has no free rotation about the inter-nuclear axis.
 - (B) p-orbitals always have only sidewise overlapping.
 - (C) s-orbitals never form π bonds.
 - (D) There can be more than one sigma bond between two atoms.
- 8.* Which of the following overlaps is/are incorrect [assuming X-axis to be the internuclear axis]:
 - (a) $2p_v + 2p_v \rightarrow \pi$
- (b) $2p_z + 2p_z \rightarrow \sigma$
- (c) $2p_x + 2p_x \rightarrow \pi$
- (d) 1s + $2p_v \rightarrow \pi$

(e) $2p_v + 2p_z \rightarrow \pi$

(A) 'a' & 'b'

- (f) 1s + 2s $\rightarrow \sigma$
- (B) 'b' & 'd'
- (C) 'd' & 'f'
- (D) 'c' & 'e'

Answer Key

DPP No. #10

1. (B) 2.

(B)

3.

(C)

(A)

5.

(A)

6. (B)

7.*

(ABD)

8.*

(BD)

nts & Sol

DPP No. # 10

 $P: CH_3 - C \equiv N$ 3.

Q: H -- N = C = O

R: CH, --- C ---- NH,

CO₃²⁻: bond length between C-O and C=O (due to resonance) bond length Maximum 4.

CO2: bond length shorter than C=O.

CO: bond order = 3 ⇒ Triple bond ⇒ bond length Minimum.

